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Abstract — The probability is found for the event that, in an
N-node randomly distributed (Gaussian) deployment of
mobile radio terminals (nodes), any two nodes are connected
by a two-hop path and are not directly connected. An ap-
proximate closed form expression, parametric in IV and a
function of the relative size of the deployment area, is given
based on fitting to the results obtained by numerical
integration. An upper bound is also obtained for the
probability of an /m-hop connection, and this expression is
applied to the calculation of an upper bound for the average
hop distance in the network.
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I. INTRODUCTION

Suppose that a number of mobile radio terminals (nodes) are
randomly deployed over a certain area, as depicted in Figure 1.
The probability that a link between two nodes has sufficient
signal-to-noise ratio for acceptable transmission quality or relia-
bility is, other factors being equal, the probability that the link
distance r is less than some value R, where R is termed the
transmission range:

Pr{Link is good} = Pr{r < R} = F,(R) (L.1)

The function F,( - ) in (1.1) is the cumulative probability distri-
bution function (cdf) for the link distance. Assuming that
different links are independent, the quantity F,.(R) can be taken
as the probability of success (acceptable transmission quality) in
a binomial trial in which two link endpoints are selected; if the
trial is repeated K times, then an estimate of the number of
good links is K F,(R). For this reason, the cdf for the link
distances in a mobile radio system is an important quantity ([1],
[2]). General expressions for this cdf are given in [2] for a uni-
form distribution of mobiles positioned over a rectangular area
and for a bivariate Gaussian distribution of positions.

In general, an ad hoc mobile network is a multihop net-
work in which the distance of a particular node A from some
other nodes may be greater than R, and A is then said to be
"hidden" from those other nodes ([3], [4]). Under a carrier
sense multiple access procedure, the "hidden terminal problem"
may arise, in which two nodes that are more than distance R
apart transmit at the same time and their transmissions "collide"
at a third node that is within distance R of both of the other
nodes. Thus, all node pairs that are connected by a single relay
node (are two hops away from each other) have the potential for
creating a hidden terminal problem. In this paper we calculate

Figure 1. Random network with dispersion parameter o,
transmission range R.

the probability that two nodes are connected by a two-hop path
for a network deployment in which the = and y coordinates of
the mobile locations have Gaussian distributions.

II. DISTRIBUTIONS OF NODE LOCATIONS AND LINKS

We assume that the z and y coordinates of the mobile locations
all have independent zero-mean Gaussian distributions, where
o1 and oy, are, respectively, the standard deviations of the x and
y coordinates. Thus the x and y components d, = x3 — x; and
dy = yo — y1 of the link distance between two nodes are also
independent Gaussian random variables (RVs) with standard
deviations 01\/5 and o9 \/5, respectively, and the probability

density function (pdf) of the link distance r = |/d2 +d2 is

found to be [2]
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in which Iy( - ) is the modified Bessel function of the first kind
and order zero. For o; = 09 = o, the link distance is a scaled
Rayleigh RV; (2.1) then simplifies to the pdf expression
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and P, the probability of a one-hop connection, is easily deter-
mined as a function of the ratio of the dispersion parameter o to
R (quantities illustrated in Figure 1):

Pr{1-hop connection} = Pr{r < R} TA P

R

drp,(r)=1-—¢e
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Calculations of P, were made for the general case of o1 # 09
and are shown in Figure 2 as a function of o7/R. The figure
shows that, as the variances of the x and y coordinates increase,
Py decreases because the nodes are typically farther apart.

III. ANALYSIS OF TWO-HOP CONNECTIONS

A two-hop connection between nodes 1 and 2 exists if two
conditions are met: (1) the positions (x1,y;) for node 1 and
(22, y2) for node 2 are such that the distance between the nodes
is greater than the transmission range R but less than 2R; and
(2) the position (x3, y3) for at least one other node is within the
distance R of both nodes 1 and 2.

The geometry of a two-hop connection is illustrated in
Figure 3. Given the positions (x1, y;) and (x2, y2) such that the
two circles with radius R intersect but their centers are greater
than R apart, the position of a relay node (z3,y;) must lie
within the area of the intersection of the two circles. Note that
the center of the area of intersection is the midpoint of the line
between (z1,y;) and (z2,y2), which has the coordinates
(%(:vl + x9), %(y1 + yz)). Note also that, in general, the orien-
tation of the area of intersection with respect to the origin of the
coordinate system depends on the relation between positions
(z1,31) and (z2,y2), so that we may denote the area of
intersection as A(x1, y1, T2, y2). The probability of a two-hop
connection for the case of N > 3 nodes, denoted P,, can be
formulated as follows:
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Figure 2. One-hop connection probability.
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Figure 3. Geometry of a two-hop connection.

Pr{l1 — 2 in 2 hops} = P,

=Pr{R <r < 2R and
at least 1 other node in the area of intersection}

=Pr{R <r<2Rand
NOT (no other node in the area of intersection)}
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where r is the distance between nodes 1 and 2. Note that the
inner integration of p, (s, y3) in (3.1) depends on the position
and orientation of the area through the weighting of the pdf. As
an approximation, we may write the inner double integral as

/dzzs/dy:s Doy (3, U3)
N——

A(ifl, Y1, T2, y2)

~ Px,y(m;“, %) /d:vg/dys

~——————
A(z1, y1, T2, y2)

(3.2)

where the area of intersection, denoted B(r), is given by [5]

Ay, y1, 2, y2)
= R? (2 cos’l(%) - sin[2 cos’l(%)]) 3.3)

Note that the area of intersection depends only on the distance
between nodes 1 and 2, relative to R. Using the approximation
approach of (3.2), the expression for P, becomes
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For convenience, we restrict our attention to the case of o =
09 = o. For this case, the expression in (3.4) can be manipula-
ted into the following form:
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Let us define a = a(r) = B(r)/2mo?. The integration over p is
carried out by making a sequence of changes of variable:
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where in keeping with the change of variable, we define b =

b(v) = B(20./v) /270>
An alternative solution to the integration over p is to ex-
pand the binomial factor in the integrand of (3.5) to obtain
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Substituting (3.8) into (3.5) yields the following expression for
PZZ
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in which we use y L, /R to index the dispersion of the nodes
relative to their transmission range.

An upper bound on P, can be derived by considering the
effect on the formulation of the probability in (3.7) as the
number of nodes approaches infinity. As N — oo, there is an
upper bound given by
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IV. NUMERICAL RESULTS AND APPROXIMATIONS

Calculations of the two-hop connectivity probability that were
performed using the integral form in (3.9) are shown in Figure 4
as a plot of P, vs. y=0/R, for N =3, 4, 5,6, 7,8, 12, 17,
22, 50. Also plotted are the one-hop connectivity probability
given in (2.3) and the asymptotic two-hop connectivity
expression given in (3.10). We observe in Figure 4 that P, is
practically zero for v < 0.25 (i.e., 0 < iR). For this small a
dispersion, all the mobile terminals can hear each other, as
evidenced in Figure 4 by the fact that P, = 1 for this range of .
As 7y increases, the locations of the terminals are dispersed over
a wider area, and in Figure 4 we see that P at first increases for
~ > 0.25. The two-hop probability then peaks at a value of
about 10% for N =3 nodes to about 45% for an infinite
number of nodes, for v from v ~ 0.4 to v ~ 0.7, respectively.
Thereafter, as 7y increases, the probability decreases because the
nodes are more likely to be too far apart for a two-hop
connection to succeed.

Using the CoPlot graphing and analysis software [6], a
nonlinear regression was used to fit the two-hop connection
probability results in Figure 4 to curves of the form given by the
following equation, parametric in « and [3:
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Figure 4. Plot of P and P, vs. v = o/ R.

As demonstrated in Figure 5, except for the case of N = 3,
these parameters are well approximated by the empirical expres-
sions

o~ 1.06e 005501 4nd B~ 0.157\/N — 3 (4.2)

Using the results of the regressions and curve fitting, an em-
pirical expression for P, as a function of NV is given by

Py~ (171.0383 e*U'U%SMZ)PM N=3 (4.3)

and

Py~ (1—1,06 e~ 0-0055(N=1)=0.157 N*3/72)P2x, N>3(44)

These expressions are plotted in Figure 6, which compares well
with Figure 4, indicating that the approximations should be
useful for studies of two-hop connectivity with different num-
bers of nodes.
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Figure 5. Curve fit for regression parameters a and /3.

V. ASYMPTOTIC m-HOP CONNECTION PROBABILITY
AND APPLICATIONS

The form of the asymptotic probability P, for a two-hop
connection suggests the following form for the asymptotic prob-
ability of an m-hop connection:

P, <Pr{(m —1)R <r <mR}

= (VRS RS S p (5

Using v = o/ R, the m-hop asymptotic connection probabilities
are plotted in Figure 7. Note that the sum of the probabilities
equals 1. The most likely number of hops, given the value of v,
the relative dispersion of the nodes, is determined from (5.1) as

, o/R < 0.64

0.64 < o/R < 1.39

1.39 < /R < 2.10 (5.2)
, 210<0/R <281

, 281 <o/R <352

1
2
Most likely # hops = ¢ 3
4
5

The asymptotic probability P, is an upper bound to the actual
probability of an m-hop connection, P,,. Therefore, an upper
bound on the average number of hops between node pairs is
given by the expectation

o0

N-1
E{h} =) mP, <
1
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m Proso (5.3)
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Substituting (5.1) in the right-hand side of (5.3) yields the fol-
lowing upper bound on the average number of hops:
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Figure 6. Approximations for P,.
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Figure 7. Asymptotic m-hop connection probabilities.

This bound is plotted in Figure 8, which suggests that the sum-
mation in (5.4) converges to a nearly linear function of the ratio
of node dispersion parameter to transmission range, -y, for
~ > 0.25. That linear function can be found from the Taylor's
series expansion of (5.4) about some value of v, say, v = 0.5, to
derive the piecewise linear function given by h, () ~ 1 for
v < 0.25, and

hi(y)ml+el+et+e?+-
+(y—05) x4et+4e*+9e 0 +--)

=0.501 +1.769y, ~>0.25 (5.5)

The linear approximation also can be obtained by the following
derivation:

a 2402 > 21402
Ze*m M7 < 5+ %/ dze™™ /" g(x)

m=0 e

(5.6)

where g(x) is a periodic train of impulses, with the Fourier
series representation (using i = /—1) [7, §6.4.3]

g(x) = i Sz —m) = i o2kia

m=—00 k=—00

(5.7)

Substituting (5.7) in (5.6), then exchanging the order of summa-
tion and integration, yields an expression involving the
characteristic function of a Gaussian random variable that
reduces to

_ > 2
R =g+ y e T

k=—00

(5.8a)

~0.5+1.7727, 7> 0.5 (5.8b)

Upper bound on average hop distance
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Figure 8. Upper bound on average hop distance.
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